Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system

Identifieur interne : 000D47 ( Chine/Analysis ); précédent : 000D46; suivant : 000D48

Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system

Auteurs : RBID : Pascal:10-0037857

Descripteurs français

English descriptors

Abstract

We have investigated the hydrogen storage properties of the LiAlH4-LiBH4 system, both un-doped and doped with titanium based catalysts. It was found that TiF3 exhibited the superior catalytic effects in terms of enhancing the hydriding/dehydriding kinetics and reducing the dehydrogenation temperature of the LiAlH4-LiBH4 system. Compared to the un-doped LiAlH4-LiBH4 system, the onset temperatures of the 5 mol% TiF3-doped sample for the first and second dehydrogenation steps were decreased by 64 and 150°C, respectively. X-ray diffraction patterns of the dehydrogenated samples revealed that the produced Al from LiAlH4 could react with B from the decomposition of LiBH4 to form AlB2 and LiAl compounds. Pressure-composition-temperature (PCT) and van't Hoff plots made it clear that the decomposition enthalpy of LiBH4 in the TiF3-doped LiAlH4-LiBH4 system is decreased from 74kJ/(mol of H2) for the pure LiBH4 to 60.4 kJ/(mol of H2). The dehydrogenation products of the TiF3-doped LiAlH4-LiBH4 sample can absorb 3.76 and 4.78 wt.% of hydrogen in 1 h and 14 h, respectively, at 600 °C and under 4 MPa of hydrogen. The formation of LiBH4 was detected by X-ray diffraction in the rehydrogenated sample.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0037857

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Reversible hydrogen storage in titanium-catalyzed LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system</title>
<author>
<name sortKey="Mao, J F" uniqKey="Mao J">J. F. Mao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Z P" uniqKey="Guo Z">Z. P. Guo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West</s1>
<s2>NSW 2304</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2304</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, H K" uniqKey="Liu H">H. K. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West</s1>
<s2>NSW 2304</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2304</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, X B" uniqKey="Yu X">X. B. Yu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West</s1>
<s2>NSW 2304</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2304</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Materials Science, Fudan University</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200433</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0037857</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0037857 INIST</idno>
<idno type="RBID">Pascal:10-0037857</idno>
<idno type="wicri:Area/Main/Corpus">004B77</idno>
<idno type="wicri:Area/Main/Repository">004C64</idno>
<idno type="wicri:Area/Chine/Extraction">000D47</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanate</term>
<term>Aluminium boride</term>
<term>Catalyst</term>
<term>Doping</term>
<term>Enthalpy</term>
<term>Hydrogen 1</term>
<term>Hydrogen storage</term>
<term>Indium addition</term>
<term>Lithium Hydroborates</term>
<term>Thermodynamic properties</term>
<term>Titanium</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Stockage hydrogène</term>
<term>Catalyseur</term>
<term>Dopage</term>
<term>Diffraction RX</term>
<term>Propriété thermodynamique</term>
<term>Enthalpie</term>
<term>Addition indium</term>
<term>Hydrogène 1</term>
<term>Titane</term>
<term>Lithium Hydroborate</term>
<term>Borure d'aluminium</term>
<term>Ti</term>
<term>LiBH4</term>
<term>Li</term>
<term>6540G</term>
<term>Alanate</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the hydrogen storage properties of the LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system, both un-doped and doped with titanium based catalysts. It was found that TiF
<sub>3</sub>
exhibited the superior catalytic effects in terms of enhancing the hydriding/dehydriding kinetics and reducing the dehydrogenation temperature of the LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system. Compared to the un-doped LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system, the onset temperatures of the 5 mol% TiF
<sub>3</sub>
-doped sample for the first and second dehydrogenation steps were decreased by 64 and 150
<sub>°</sub>
C, respectively. X-ray diffraction patterns of the dehydrogenated samples revealed that the produced Al from LiAlH
<sub>4</sub>
could react with B from the decomposition of LiBH
<sub>4</sub>
to form AlB
<sub>2</sub>
and LiAl compounds. Pressure-composition-temperature (PCT) and van't Hoff plots made it clear that the decomposition enthalpy of LiBH
<sub>4</sub>
in the TiF
<sub>3</sub>
-doped LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system is decreased from 74kJ/(mol of H
<sub>2</sub>
) for the pure LiBH
<sub>4</sub>
to 60.4 kJ/(mol of H
<sub>2</sub>
). The dehydrogenation products of the TiF
<sub>3</sub>
-doped LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
sample can absorb 3.76 and 4.78 wt.% of hydrogen in 1 h and 14 h, respectively, at 600
<sub>°</sub>
C and under 4 MPa of hydrogen. The formation of LiBH
<sub>4</sub>
was detected by X-ray diffraction in the rehydrogenated sample.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>487</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Reversible hydrogen storage in titanium-catalyzed LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAO (J. F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUO (Z. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIU (H. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YU (X. B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Superconducting and Electronic Materials, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West</s1>
<s2>NSW 2304</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Materials Science, Fudan University</s1>
<s2>Shanghai 200433</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>434-438</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000171444610880</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0037857</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated the hydrogen storage properties of the LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system, both un-doped and doped with titanium based catalysts. It was found that TiF
<sub>3</sub>
exhibited the superior catalytic effects in terms of enhancing the hydriding/dehydriding kinetics and reducing the dehydrogenation temperature of the LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system. Compared to the un-doped LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system, the onset temperatures of the 5 mol% TiF
<sub>3</sub>
-doped sample for the first and second dehydrogenation steps were decreased by 64 and 150
<sub>°</sub>
C, respectively. X-ray diffraction patterns of the dehydrogenated samples revealed that the produced Al from LiAlH
<sub>4</sub>
could react with B from the decomposition of LiBH
<sub>4</sub>
to form AlB
<sub>2</sub>
and LiAl compounds. Pressure-composition-temperature (PCT) and van't Hoff plots made it clear that the decomposition enthalpy of LiBH
<sub>4</sub>
in the TiF
<sub>3</sub>
-doped LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
system is decreased from 74kJ/(mol of H
<sub>2</sub>
) for the pure LiBH
<sub>4</sub>
to 60.4 kJ/(mol of H
<sub>2</sub>
). The dehydrogenation products of the TiF
<sub>3</sub>
-doped LiAlH
<sub>4</sub>
-LiBH
<sub>4</sub>
sample can absorb 3.76 and 4.78 wt.% of hydrogen in 1 h and 14 h, respectively, at 600
<sub>°</sub>
C and under 4 MPa of hydrogen. The formation of LiBH
<sub>4</sub>
was detected by X-ray diffraction in the rehydrogenated sample.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01I01</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60E40G</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Stockage hydrogène</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Hydrogen storage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Catalyseur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Catalyst</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Catalizador</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Propriété thermodynamique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thermodynamic properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Propiedad termodinámica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Enthalpie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Enthalpy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Entalpía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Addition indium</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium addition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Adición indio</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Hydrogène 1</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Hydrogen 1</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Titane</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Titanium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Titanio</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Lithium Hydroborate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Lithium Hydroborates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Litio Hidroborato</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Borure d'aluminium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Aluminium boride</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aluminio boruro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Ti</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>LiBH4</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Li</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>6540G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Alanate</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Alanate</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>025</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000D47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0037857
   |texte=   Reversible hydrogen storage in titanium-catalyzed LiAlH4-LiBH4 system
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024